
A Succinct Story of Zero Knowledge
NALIN BHARDWAJ, University of California, San Diego, USA

If I had but the time and you had but the brain . . .

Lewis Carroll, The Hunting of the Snark

We study the development of "production" zero-knowledge proofs starting
from their theoretical roots in computational complexity theory and the PCP
theorem, ultimately creating a summary of the most important developments
in the study of zero-knowledge proofs.

Key Words and Phrases: complexity theory, cryptography, zero knowledge

1 INTRODUCTION
Zero-knowledge proofs are extremely interesting primitives to study
from a practical perspective. zk-SNARKs and zk-STARKs have cap-
tured a lot of attention from the blockchain/crypto space in re-
cent years, going from theoretical research paper constructions
to programmable privacy-preserving production circuits in just a
few years. Starting with [Sasson et al. 2014]’s Zcash in 2014, over
the past 5 years we’ve seen the advent of several decentralized
blockchain applications that would be otherwise infeasible without
ZK proofs. These include DarkForest: a completely decentralized
strategy game using ZK proofs to create a "fog-of-war" [Dark Forest
Team 2020] and MACI: a primitive for collusion resistant digital
voting [Buterin 2019] among many others. Deeper than just the
application layer, there have also been fundamental protocol-layer
ideas such as the Mina protocol [Bonneau et al. 2020], StarkNet
[StarkWare [n.d.]] and Cairo [Goldberg et al. 2021] from StarkWare,
ZKSync [Gluchowski 2021], etc. that are blockchain scaling solutions
using ZK SNARK/STARKs to securely scale transaction throughput
in a decentralized ledger. Unsurprisingly, Ethereum creator Vitalik
Buterin, too, expects "...ZK-SNARKs to be a significant revolution
as they permeate the mainstream world over the next 10-20 years."
[Buterin 2021]
On the theoretical counterpart, looking at the subject from the

perspective of complexity theory, cryptographic zero-knowledge
proofs that exist in production now are very much a consequence
of a lot of early work in complexity theory, starting from Interactive
Protocols (IP) leading up to the seminal PCP theorem, which directly
translated into strategies for creating SNARGs, and further, led
advances in the follow-up zero-knowledge SNARK/STARKs, the
current state of the art in practical zero-knowledge proofs.

2 INTERACTIVE PROOFS: 𝐼𝑃

2.1 Deterministic 𝐼𝑃 = 𝑁𝑃

Informally, deterministic 𝐼𝑃 define the class of problems where
a prover can convince a verifier of a witness, i.e. that the prover
knows an input that satisfies a particular language in an (interactive)
environment where they can communicate with each other.

Formally, let there exist a language 𝐿 and a pre-image 𝑥 ∈ 𝐿. Let
the prover and verifier have a transcript (a log of messages back and

Author’s address: Nalin Bhardwaj, nalinbhardwaj@nibnalin.me, University of Califor-
nia, San Diego, USA.

forth) 𝜋 . Then, an interactive proof system is given by a verification
algorithm 𝑉 (run by the verifier) with the properties:

(1) Completeness: True assertions have valid proofs. That is,
if 𝑥 ∈ 𝐿, then ∃𝜋 such that 𝑉 (𝑥, 𝜋) accepts.

(2) Soundness: False assertions have no proof. That is, if 𝑥 ∉ 𝐿,
then ∀𝜋𝑉 (𝑥, 𝜋) rejects.

(3) Efficiency: 𝑉 (𝑥, 𝜋) stops in time 𝑝𝑜𝑙𝑦 (|𝑥 |).

From the definition, it is clear that 𝑁𝑃 ⊆ Deterministic 𝐼𝑃 , since
with simply 𝜋 = {𝑥}, for all languages in 𝑁𝑃 , 𝑉 can verify the
witness in poly-time.

We can also show the other direction: Deterministic 𝐼𝑃 ⊆ 𝑁𝑃 .
Assume there exists 𝐿 ∈ Deterministic 𝐼𝑃 . Then, there exists a tran-
script 𝜋 = (𝜋1, 𝜋2, . . . 𝜋𝑘) between the prover and the verifier for
some 𝑘 . Then, since we know that the verifier runs in poly-time, |𝜋 |
must also be poly-time. Further, since the verifier is deterministic,
the prover can just simulate the verifier to generate the transcript
between them, and with this transcript as witness, the verifier can
verify the solution in poly-time. So, in totality, we have shown de-
terministic 𝐼𝑃 ’s equivalence to 𝑁𝑃 . This characterisation of 𝐼𝑃 is
so popular now that even 𝑁𝑃 is sometimes defined this way (c.f.
[Sipser 1996]).

Given that deterministic 𝐼𝑃 is just 𝑁𝑃 , it’s not immediately clear
why we should care about it. What if we add randomness, allowing
the verifier to be probabilistic? That is, letting the verifier produce
false positives or true negatives with some small (practically negligi-
ble) probability. Formally, we let the prover 𝑃 encode the previously
mentioned conditions of deterministic 𝐼𝑃 as follows:

(1) Completeness: If 𝑥 ∈ 𝐿, then the transcript 𝜋 is accepted
with at least 2/3 probability by 𝑉 .

(2) Soundness: If 𝑥 ∉ 𝐿, then for all possible provers 𝑃 , the
transcript 𝜋 is rejected with at least 2/3 probability by 𝑉 .

(3) Efficiency: 𝑉 (𝑥, 𝜋) stops in time 𝑝𝑜𝑙𝑦 (|𝑥 |).

Intuitively, one might compare this probabilistic 𝐼𝑃 class with
other complexity classes that use randomness. For instance, with
𝐵𝑃𝑃 , the class of problems solvable in polynomial time by a proba-
bilistic Turing Machine. For 𝐵𝑃𝑃 , [Bennett and Gill 1981] proved
that 𝐵𝑃𝑃 ⊆ 𝑃/𝑝𝑜𝑙𝑦 and in fact, it is conjectured that 𝑃 = 𝐵𝑃𝑃 (for
instance, in [Goldreich 2011]). Given this information about 𝐵𝑃𝑃 ,
intuitively, one might guess that adding randomness to 𝐼𝑃 is not
significantly helpful.
But, on the contrary, we will show that adding this randomness

actually makes 𝐼𝑃 quite powerful.

2 • Nalin Bhardwaj

2.2 𝐼𝑃 = 𝑃𝑆𝑃𝐴𝐶𝐸1

Not only is the entire polynomial hierarchy 𝑃𝐻 contained in 𝐼𝑃

(as shown by [Lund et al. 1992]), but 𝐼𝑃 is 𝑃𝑆𝑃𝐴𝐶𝐸! To that end,
first, we show that 𝐼𝑃 ⊆ 𝑃𝑆𝑃𝐴𝐶𝐸. Let there exist a language 𝐿 ∈ 𝐼𝑃
and a verifier 𝑉 for it. We show that a prover can compute the
maximum probability with which some element 𝑥 ∈ 𝐿 is accepted
by the prover in 𝑃𝑆𝑃𝐴𝐶𝐸, and therefore, 𝐼𝑃 ⊆ 𝑃𝑆𝑃𝐴𝐶𝐸. Consider a
decision tree of possibilities of the interactive protocol where each
path of length 𝑖 from the root to the node corresponds to some
prefix 𝜋1,...,𝑖 of a transcript 𝜋 . Since 𝑉 runs in polynomial time, the
depth of the tree is at most polynomial, and each node has at most
𝑂 (2𝑝𝑜𝑙𝑦 (𝑛)) children since each message has at-most polynomial
length. In this tree, let’s define an auxiliary attribute 𝐴: for each
node 𝑖 , 𝐴𝑖 is the maximum probability with which the prover can
make the verifier accept a proof such that the prefix of the transcript
corresponds to the path that ends at node 𝑖 , i.e. 𝑃𝑎𝑡ℎ𝑟𝑜𝑜𝑡,...𝑖 = 𝜋1,...,𝑖 .
We can compute this using dynamic programming on trees: For
each leaf, we assign 𝐴𝑖 = 1 if 𝑉 accepts at that leaf or 𝐴𝑖 = 0
otherwise. For all internal nodes, let 𝐶𝑖 = the set of children of a
node 𝑖 . For an internal node where the next message is a response
from the prover, we can set 𝐴𝑖 =𝑚𝑎𝑥 ({𝐴𝑐 ∀𝑐 ∈ 𝐶𝑖 }) and otherwise
to 𝐴𝑖 =𝑚𝑒𝑎𝑛({𝐴𝑐 ∀𝑐 ∈ 𝐶𝑖 }). Therefore, in this setup, 𝐴𝑟𝑜𝑜𝑡 is the
maximum probability with which the prover can make the verifier
accept the input, and since we can run this computation in 𝑃𝑆𝑃𝐴𝐶𝐸,
𝐼𝑃 ⊆ 𝑃𝑆𝑃𝐴𝐶𝐸.
Now, we show 𝑃𝑆𝑃𝐴𝐶𝐸 ⊆ 𝐼𝑃 by showing that a 𝑃𝑆𝑃𝐴𝐶𝐸 −

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 language is in 𝐼𝑃 . This was originally proven by [Shamir
1992], but here we demonstrate a simpler proof presented in [Shen
1992].

We work with the 𝑃𝑆𝑃𝐴𝐶𝐸−𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 language of totally quanti-
fied boolean formulae(𝑇𝑄𝐵𝐹) which consists of quantified formula
of the form ∀𝑥1∃𝑥2 . . . 𝑄𝑛𝑥𝑛𝜙 (𝑥1, . . . 𝑥𝑛) where 𝜙 is a 3CNF and
𝑄𝑖 = ∀ if 𝑖 is odd and 𝑄𝑖 = ∃ if 𝑖 if even. (Note that we actually only
require 𝑄 to be an alternating sequence of ∃ and ∀, a symmetric
proof if we switch the parity of the starting element.)
Arithmetization: We convert 𝜙 into an arithmetic polynomial

using the following transformation:

(1) Variable: 𝑥𝑖 → 1 − 𝑥𝑖
(2) Clause: 𝐶 𝑗 = (𝑥𝑎 ∨ 𝑥𝑏 ∨ 𝑥𝑐) → 𝑃 𝑗 = 1 − (1 − 𝑥𝑎)𝑥𝑏 (1 − 𝑥𝑐)
(3) Formula:𝜙 (𝑥1, 𝑥2, . . . 𝑥𝑛) = 𝐶1∧𝐶2∧. . .𝐶𝑚 → 𝑃 (𝑥1, 𝑥2, . . . 𝑥𝑛) =∏𝑚

𝑗=1 𝑃 𝑗 (𝑥1, 𝑥2 . . . 𝑥𝑛)

Clearly, the outputs of the polynomial 𝑃 are equivalent to that of
the formula 𝜙 on binary inputs {0, 1}𝑛 and 𝑃 .

Next, we note that if we fix values𝑥1, . . . 𝑥𝑛−1, then 𝑃 (𝑥1, . . . 𝑥𝑛−1, 0)·
𝑃 (𝑥1, . . . 𝑥𝑛−1, 1) evaluates 1 if and only if ∀𝑥𝑛𝜙 (𝑥1, . . . 𝑥𝑛) is true.
Similarly, if 𝑄𝑛 was ∃, we note that 1 − (1 − 𝑃 (𝑥1, . . . 𝑥𝑛−1, 0)) ·
(1 − 𝑃 (𝑥1, . . . , 𝑥𝑛−1, 1)) evaluates to 1 iff ∃𝑥𝑛𝜙 (𝑥1, . . . 𝑥𝑛) is true.
With these observations, let

∏
𝑥𝑛 ∈{0,1} 𝑃 (𝑥1, . . . 𝑥𝑛) be defined as

𝑃 (𝑥1, . . . 𝑥𝑛−1, 0)·𝑃 (𝑥1, . . . 𝑥𝑛−1, 1) and let
∐

𝑥𝑛 ∈{0,1} 𝑃 (𝑥1, . . . 𝑥𝑛) be
defined as 1− (1−𝑃 (𝑥1, . . . 𝑥𝑛−1, 0)) · (1−𝑃 (𝑥1, . . . , 𝑥𝑛−1, 1)). Then,
we can rewrite the original quantified boolean formula ∀𝑥1∃𝑥2 ·

1This section is based on [Katz 2011].

Protocol 1: Naive TBQF
Prover Verifier

𝐹1 ←
∐

𝑥2 · · ·
∏

𝑥𝑛
𝜙 (𝑥1, . . . 𝑥𝑛)

Check
𝐹1 (0) · 𝐹1 (1) = 1
Select random 𝑟1

𝑟1

𝐹2 ←
∏

𝑥3 · · ·
∏

𝑥𝑛
𝜙 (𝑟1, . . . 𝑥𝑛)

Check
𝐹1 (𝑟1) =
1 − (1 − 𝐹2 (0) (1 − 𝐹2 (1)))
Select 𝑟2

•
•
•

∀𝑥𝑛𝜙 (𝑥1, . . . 𝑥𝑛) is true iff∏
𝑥1∈{0,1}

∐
𝑥2∈{0,1}

· · ·
∏

𝑥𝑛 ∈{0,1}
𝜙 (𝑥1, . . . 𝑥𝑛) = 1 (1)

Based on this, we describe a naive protocol in ??. Immediately, it’s
clear that the protocol is not efficient: The degree of each polynomial
𝐹𝑖 is 𝑂 (2𝑚 · 3𝑚). This follows from the observation that for 𝑥1, the
degree doubles with each

∏
/
∐
).

To address this issue, we observe that in equation (1), each 𝑥𝑖 ∈
{0, 1}. But this implies, for any 𝑎 ∈ Z+, 𝑥𝑎

𝑖
= 𝑥𝑖 .2 So by reducing the

power of any intermediate polynomials to 1, we obtain a simplified
representation of equation (1) of the form:∏

𝑥1∈{0,1}
𝑅𝑥1

∐
𝑥2∈{0,1}

𝑅𝑥2 · · ·
∏

𝑥𝑛 ∈{0,1}
𝑅𝑥𝑛𝜙 (𝑥1, . . . 𝑥𝑛) = 1 (2)

where 𝑅𝑥𝑖 is the reduced degree polynomial corresponding to the
variable 𝑥𝑖 . Notice that for all the reduced 𝑅𝑥𝑖 except the innermost
𝑛 𝑅𝑥𝑖 , the degree of the intermediate polynomials is at most 2, and
for the innermost 𝑅𝑥𝑖 , the degree is upper bounded at 3𝑚.
With this clever trick, we can create a modified version of the

Naive protocol that successfully proves 𝑇𝐵𝑄𝐹 : At the 𝑖th step in
the protocol, we prove the 𝑖th polynomial in our equation. If it is of
the form of a

∏
or

∐
, we proceed similarly to the Naive protocol.

Otherwise, if it’s of the form 𝑅𝑥 𝑗
(for some 𝑗), we simply check if

𝐹𝑖−1 (𝑟𝑖) = 𝐹𝑖 , with the variables 𝐹𝑖 and 𝑟𝑖 being analogous to the
Naive protocol as well.

We now show that this satisfies all conditions to be a 𝐼𝑃 protocol:
(1) Completeness:, if the prover is not cheating, they can simply

compute the polynomial with the randomness and send it
back to the verifier and the equations will hold for any future
values of randomness 𝑟𝑖 .

2This observation is also the primary contribution made by [Shen 1992] in his variant
of [Shamir 1992]’s original proof.

A Succinct Story of Zero Knowledge • 3

(2) Soundness: By the Schwartz–Zippel lemma, the probability
that the verifier’s check holds true but the polynomials are
not actually equal is 𝑑/𝑞, where 𝑑 is the degree of the poly-
nomial and 𝑞 is the size of the prime field we’re working
in. We now compute a strict upper bound for 𝑑 : For each
operator

∏
or

∐
, there is error 1/𝑞, error 3𝑚/𝑞 for the last

𝑛 operators, and error 2/𝑞 for all operators in the form of
𝑅𝑖 . Overall, we have error 𝑛

𝑞 +
3𝑚𝑛
𝑞 +

2
𝑞 ·𝑂 (𝑛) = 𝑂 (𝑚𝑛+𝑛2

𝑞),
which is clearly sufficient to obtain negligible error with the
size of the field being 𝑝𝑜𝑙𝑦 (𝑚,𝑛).

(3) Efficiency: Efficiency follows since all polynomials have
length 𝑝𝑜𝑙𝑦 (𝑛), and therefore any comparisons, multipli-
cations etc. can be computed symbolically in 𝑝𝑜𝑙𝑦 (𝑛) time.

This finishes our proof that 𝐼𝑃 is, indeed, extremely powerful.
Essentially, we have derived a protocol for𝑇𝑄𝐵𝐹 by transforming a
boolean formula into a polynomial. The key idea, then, is to "strip"
each polynomial in the equation, randomly fixing a variable in
the polynomial and checking if previous answers agree with the
answers in the future.

2.3 Arthur-Merlin Games
We now look at an interesting variant of the 𝐼𝑃 class, 𝐴𝑀 : Arthur-
Merlin games. This is a restricted class of 𝐼𝑃 in which the verifier
cannot use "private" randomness, i.e. a verifier’s messages are simply
completely random messages in some distribution. 3

2.3.1 𝐴𝑀 = 𝐼𝑃 . It is trivially seen that 𝐴𝑀 ⊆ 𝐼𝑃 since it’s simply
an additional restriction on any language in 𝐼𝑃 . But, in fact, 𝐴𝑀 =

𝐼𝑃 . While we won’t formally prove this, we present an intuitive
explanation of this: Notice that in the proof for 𝑃𝑆𝑃𝐴𝐶𝐸 ⊆ 𝐼𝑃 in
2.2, we described a protocol that is already in 𝐴𝑀 (since all verifier
messages are random). This is a clear indication that 𝐴𝑀 is at least
as powerful as 𝐼𝑃 , but in fact, since 𝑃𝑆𝑃𝐴𝐶𝐸 is an "upper bound"
for 𝐼𝑃 (and consequently 𝐴𝑀), 𝐴𝑀 = 𝑃𝑆𝑃𝐴𝐶𝐸 and thus 𝐼𝑃 = 𝐴𝑀 .
Arthur-Merlin Games are a precursor to SNARGs in that they

show us that, in theory, powerful zero-knowledge proofs can exist in
a decentralised environment like a public blockchain, where all com-
putational intermediates are readable by an adversary prover/verifier.
Using an 𝐴𝑀 protocol allows the prover and verifier to leave their
internals public, and they can safely use public randomness oracles
(for instance, recent blockchain block hashes or randomness from a
prior trusted setup).

3 ZERO KNOWLEDGE4

While interactive protocols (and Arthur Merlin Games) are ex-
tremely interesting as standalone constructs, we now turn our focus
to protocols that possess the "zero-knowledge" property. Informally,
a zero-knowledge proof is a proof that does not allow the verifier
to learn anything other than the fact that a particular assertion is
being proven true.

3The name for this class originates from the folk tale of King Arthur and Merlin the
Magician — The Merlin (the prover) is an all-powerful being trying to convince King
Arthur (the verifier) of an assertion, but given Merlin’s psychic powers, King Arthur
cannot possibly keep his randomness secret from him.
4This section borrows from [Vadhan 2007] and its references.

More formally, we define a zero-knowledge proof system as one
where there exists some probabilistic poly-time, non-interactive
algorithm 𝑆(called the simulator) which, when given any verifier
and any pre-image 𝑥 ∈ 𝐿, produces output that is indistinguishable
from the verifier’s point of view of the interaction with the prover.
Therefore, the zero-knowledge property in an interactive proof
allows a prover to not leak any unnecessary information about
its pre-image while proving the assertion securely via the witness.
Thus, zero-knowledge is a security property([noa 2021]), and just like
other security properties, there are two variants of zero-knowledge:

(1) Computational security: This type of security relies on the
hardness of computational problems (for instance, problems
in 𝑁𝑃). These rely on the idea that it is computationally
infeasible for the verifier to brute-force and find a pre-image
that corresponds to a particular witness/transcript.

(2) Statistical security: Such security relies on the idea that the
distribution of the witness/transcript generated for an arbi-
trary pre-image is statistically "close" to that of any other
pre-images, virtually making it indistinguishable from those
pre-images for the verifier. This notion of proximity is for-
malised by the notion of negligible function([noa 2020]): the
distance function between the witnesses/transcripts in the
domain of pre-images is a negligible function.

Next, we present a classic example of statistical zero-knowledge
proofs to show a flavour of the ideas underlying practical construc-
tions of such proof systems:

3.1 Graph 3-coloring5

A 3-coloring of an undirected graph 𝐺 = (𝑉 , 𝐸) is an assignment
𝐶 : 𝑉 → {𝑅,𝐺, 𝐵} (say “Red,” “Green,” and “Blue” colors) such that
no pair of adjacent vertices are assigned the same colour. We show
that there exists a statistical zero-knowledge proof system for the
language of graphs 𝐺 that are 3-colorable.
Assume there exists a one-way function 𝑓 that both the verifier

and prover initially agree on using. Then we describe a protocol as
follows:

(1) Prover : Say, the prover has a 3-coloring 𝐶 it wants to prove.
Let 𝜏 be a permutation of {𝑅,𝐺, 𝐵} selected uniformly at
random, and let 𝐶 ′ = 𝜏 · 𝐶 . Then, for all 𝑣 ∈ 𝑉 , let boxes
𝐷𝑣 = 𝑓 (𝐶 ′𝑣). Send the boxes 𝐷 to the Verifier.

(2) Verifier : Choose a random edge (𝑢, 𝑣) ∈ 𝐸, and send it to the
prover.

(3) Prover : Send 𝐶 ′𝑢 and 𝐶 ′𝑣 to the verifier, essentially unboxing
𝐷𝑢 and 𝐷𝑣 .

(4) Verifier : Check that 𝐶 ′𝑢 and 𝐶 ′𝑣 are distinct, and that the
prover’s commitments match the claimed pre-images, i.e.
𝐷𝑢 = 𝑓 (𝐶 ′𝑢) and 𝐷𝑣 = 𝑓 (𝐶 ′𝑣). Reject if not.6

We now prove that this is a zero-knowledge interactive protocol:

5This section is due to [Goldreich et al. 1991]
6This application of a one-way function is formally a cryptographic primitive called a
commitment scheme. A commitment scheme is said to be hiding, i.e. it does not reveal
anything about the input in the commitment 𝐷 and binding, i.e. the prover cannot
cheat by using multiple inputs that generate the same commitment.

4 • Nalin Bhardwaj

Completeness: Note that if 𝐶 is a valid 3-coloring, then 𝐶 ′ is a
valid 3-coloring as well for any 𝜏 . Thus, if 𝐶 is a valid 3-colouring,
the verifier definitely accepts.
Soundness: If 𝐶 is not a valid coloring, then there must exist

some edge (𝑢, 𝑣) ∈ 𝐸 such that 𝐶 ′𝑢 ≠ 𝐶 ′𝑣 , so the verifier must reject
with probability at least 1/|𝐸 |. If we simply repeat this protocol
𝑂 (|𝐸 |) times, the probability that the verifier accepts an invalid
coloring is (1 − |𝐸 |)𝑂 (|𝐸 |) < 1/3.

Efficiency: Efficiency follows from a similar argument as Sound-
ness, and thus details are omitted for brevity.

Zero-Knowledge: Now, we look at the most interesting property
of this protocol. Intuitively, let’s consider what the verifier learns
in the course of the protocol: Since 𝐷 is established via a one-way
function, the only information the verifier learns is 𝐶 ′𝑢 and 𝐶 ′𝑣 for
some (𝑢, 𝑣) ∈ 𝐸. But then,𝐶 ′ = 𝜏 ·𝐶 , i.e. it is simply an independent,
random permutation of the complete colouring — all the information
learnt is something the verifier could have simulated on its own.
More substantially, we notice that this information learnt by the
verifier is, in fact, something "close" to the information the verifier
would have learnt for all other possible colourings (including invalid
ones), implying that the protocol does indeed satisfy the statistical
zero-knowledge condition.
And now, for the big reveal, we note that standard complexity

theory results tell us that graph 3-colouring is an 𝑁𝑃-complete
language! This means that we have just shown that if one-way
functions exist, all languages in 𝑁𝑃 have zero-knowledge proof
systems. This is quite powerful, and a more general result follows:

If one-way functions exist, then every language in NP has
both a computational zero-knowledge proof system and a
statistical zero-knowledge argument system.

We skip the counterpart proof for computational zero-knowledge
proof systems since the statistical zero-knowledge argument system
already provides a strong intuition for the ideas used in demonstrat-
ing both kinds of zero-knowledge proof security.

Later, it turned out that even the assumption that one-way func-
tions exist is extraneous. [Ben-Or et al. 1988] first proved this result
by defining a new multi-prover model for interactive proofs. While
their original application for this model was only to derive a proof
free of the one-way function requirement, it turned out that their
model for interactive proofs was significantly more powerful than
even they originally expected. Let’s see how.

4 MULTIPROVER INTERACTIVE PROOFS:𝑀𝐼𝑃

𝑀𝐼𝑃 is a variant of 𝐼𝑃 defined by [Ben-Or et al. 1988] where in-
stead of just one prover, two independent provers initialise on some
common input but are unable to communicate with each other af-
ter starting communication with the verifier, essentially allowing
the verifier to cross-check any assertions between the two provers.
[Ben-Or et al. 1988] were able to show that with this variant, the
intractability assumptions of one-way functions were unnecessary
to prove the existence of zero-knowledge proofs for all languages
in 𝑁𝑃 .

In fact, as [Babai et al. 1991] later show,𝑀𝐼𝑃 is as powerful, if not
more, than just 𝐼𝑃 , 𝑀𝐼𝑃 = 𝑁𝐸𝑋𝑃𝑇 𝐼𝑀𝐸, i.e. the class of problems
solvable by nondeterministic Turing Machines in exponential time.

While the relationship between 𝑁𝐸𝑋𝑃𝑇 𝐼𝑀𝐸 and 𝑃𝑆𝑃𝐴𝐶𝐸 itself is
not well known, certainly 𝑃𝑆𝑃𝐴𝐶𝐸 ⊆ 𝑁𝐸𝑋𝑃𝑇 𝐼𝑀𝐸 since standard
results tell us 𝑃𝑆𝑃𝐴𝐶𝐸 ⊆ 𝐸𝑋𝑃 ⊆ 𝑁𝐸𝑋𝑃𝑇 𝐼𝑀𝐸. Note, however the
strictness of both the results is unknown (𝑃𝑆𝑃𝐴𝐶𝐸 vs. 𝐸𝑋𝑃 and
𝐸𝑋𝑃 vs. 𝑁𝐸𝑋𝑃𝑇 𝐼𝑀𝐸).
Another consequential result (that may be seen as a weak pre-

cursor to the 𝑃𝐶𝑃 theorem) was𝑀𝐼𝑃 (𝑝𝑜𝑙𝑦) = 𝑀𝐼𝑃 (1), i.e. a system
with polynomially many rounds can be converted into one with a
constant number of rounds and further, a system with any constant
number of provers can be converted to one with 2 provers. This is
quite a powerful result since it implies all generalisations, at least
on the axes of provers and rounds collapse to𝑀𝐼𝑃 = 𝑁𝐸𝑋𝑃𝑇 𝐼𝑀𝐸.
This was shown by [Lapidot and Shamir 1997].

While on one hand, as with𝑀𝐼𝑃 , complexity theory saw progress
by loosening constraints and defining new generalisations of the
original 𝐼𝑃 protocol, on the other end of the spectrum, progress
was made by considering restrictions on 𝐼𝑃 , such as with the 𝑃𝐶𝑃
theorem.

5 PCP: SUCCINCTNESS AND THE HARDNESS OF
APPROXIMATION

A probabilistically checkable proof (𝑃𝐶𝑃) is a type of proof that can
be checked by a randomized algorithm using a bounded amount
of randomness and reading a bounded number of bits of the proof.
Much like randomised 𝐼𝑃 , a 𝑃𝐶𝑃 verifier is an algorithm that accepts
correct proofs and rejects incorrect oneswith high probability.While
there is no obvious connection between 𝑃𝐶𝑃s and interactivity, most
research into 𝑃𝐶𝑃 started from the point of view of interactivity,
and protocols like 𝑀𝐼𝑃 and randomised algorithms were at the
intersection of complexity theory and cryptography at the time.

5.1 PCP theorem: 𝑁𝑃 = 𝑃𝐶𝑃 [𝑂 (log𝑛),𝑂 (1)]
Formally, the PCP Theorem states that 𝑁𝑃 = 𝑃𝐶𝑃 [𝑂 (log𝑛),𝑂 (1)],
where the first part(𝑂 (log𝑛)) refers to the number of bits of random-
ness required and the second part(𝑂 (1)) refers to the bits of proof
the verifier algorithm needs to read. In English, this means that
for any language in 𝑁𝑃 , it is possible to generate a proof such that
to verify it with high probability, a verifier only needs to generate
logarithmic bits of randomness and only needs to read a constant
number of bits in the order of the length of the proof.
The 𝑃𝐶𝑃 theorem has been one of the crowning achievements

of complexity theory. Consequences of the 𝑃𝐶𝑃 theorem not only
had a strong impact on cryptographers’ quest for succinct zero-
knowledge proofs but also complexity theory more widely since
they provided very strong bounds for approximating 𝑁𝑃 languages
in general.

It is hard to overstate the seeming impossibility of this result. In
some metaphysical sense, it means that we can write math proofs
millions or billions of pages long that only need a small amount of
computation for anyone else to verify. Unsurprisingly, this theorem
was the culmination of a series of clever ideas and observations over
the span of many papers, authors and years of hard work.

A Succinct Story of Zero Knowledge • 5

5.2 Simpler 𝑃𝐶𝑃 results
As a warm-up, we take a quick look at how the framing of 𝑃𝐶𝑃
relates to the usual complexity theoretical classes.

5.2.1 𝑐𝑜𝑅𝑃 = 𝑃𝐶𝑃 [𝑝𝑜𝑙𝑦 (𝑛),𝑂 (1)]. This follows from the defini-
tion of 𝑐𝑜𝑅𝑃 : it is the set of languages for which there exists a
probabilistic Turing Machine that runs in polynomial time, is al-
lowed to generate randomness, and correctly detects false instances
and detects correct instances with high probability.

5.2.2 𝑁𝑃 = 𝑃𝐶𝑃 [0, 𝑝𝑜𝑙𝑦 (𝑛)]. This, too, follows from the definition
of 𝑁𝑃 , when framed in the manner we did in section 2.1.

5.2.3 𝑃𝐶𝑃 [0,𝑂 (log𝑛)] = 𝑃 = 𝑃𝐶𝑃 [𝑂 (log𝑛), 0]. . In the first part
of the equality, since the machine can only read a logarithmic order
of bits, these bits can be brute-forced by a polynomial-time TM
anyway. Similarly, the latter part follows since a polynomial-time
TM can try all possible strings of randomness of length 𝑂 (log𝑛) in
polynomial time, not requiring the randomness at all.

5.3 𝑁𝑃 = 𝑃𝐶𝑃 [𝑂 (log𝑛),𝑂 (1)]7
Finally, we now look at the ideas behind the core 𝑃𝐶𝑃 theorem and
its consequences. This is meant to be an informal introduction to the
core ideas of the proof, a formal reference can be found in [Arora
et al. 1998] and [Dinur 2007].

Let us turn to our old example problem of graph 3-colouring from
section 3.1. Since we know graph 3-colouring is an 𝑁𝑃-complete
problem, it is sufficient to come up with a scheme to solve it in
𝑃𝐶𝑃 [𝑂 (log𝑛),𝑂 (1)] to prove our assertion. So, let’s look at our orig-
inal solution. The verifier had to make 𝑂 (|𝐸 |) queries and generate
𝑂 (|𝐸 |) randombits, so clearly that solution is in 𝑃𝐶𝑃 [𝑝𝑜𝑙𝑦 (𝑛), 𝑝𝑜𝑙𝑦 (𝑛)].

How can we improve it? It seems like we need to make 𝑂 (|𝐸 |)
queries because the prover could have found some colouring that
is almost a 3-colouring, with maybe a couple faulty edges (like the
graph in ??). The only way to gain confidence about discovering
such faults is to query almost all edges. The core implication of the
𝑃𝐶𝑃 theorem is that there is a way to amplify such errors, to a point
where we only need to make a constant number of queries to detect
any such errors with high probability. Essentially, we want to find a
transformation from any graph𝐺 into another graph 𝐻 such that if
𝐺 fails to have a 3-colouring, 𝐻 fails to have a 3-colouring badly.

Formally, we will find a way to transform any graph 𝐺 to a new
graph 𝐻 such that if 𝐺 has a 3-colouring, 𝐻 has a 3-colouring, but
if 𝐺 has no 3-colouring, i.e. for any 3-colouring there exists at least
one edge such that it does not satisfy the colouring constraint, in 𝐻 ,
for any 3-colouring, a significant fraction (say 10%) of the edges do
not satisfy the colouring constraint. This 10% fraction is called the
"gap" between a correct 3-colouring and any other 3-colouring.
Let’s skeletonize our variables. Let 𝑓 : 𝑉 → {𝑅,𝐺, 𝐵} be a 3-

coloring of the nodes. Next, define 𝑔((𝑢, 𝑣)) =
{
1 if 𝑓 (𝑢) = 𝑓 (𝑣)
0 if 𝑓 (𝑢) ≠ 𝑓 (𝑣)

for an edge (𝑢, 𝑣) ∈ 𝐸. Finally, let 𝛿𝑓 =

∑
(𝑢,𝑣)∈𝐸 𝑔 ((𝑢,𝑣))

|𝐸 | for some
3-coloring 𝑓 . Further, let 𝜋𝐺 = min∀𝑓 𝛿𝑓 , i.e. 𝜋𝐺 is the fault rate of
the least faulty 3-coloring of a graph 𝐺 .
7This section is primarily based on a Lecture Series by Irit Dinur, starting with [Irit
Dinur 2019].

Fig. 1. Example of a graph that cannot be 3-colored but has an almost
perfect coloring with just one fault. The dotted grey lines denote that the
circles are copies of the same node.

5.3.1 Next, we claim that we can create a transformation 𝐺 → 𝐻

such that 𝜋𝐻 ≥ 2 · 𝜋𝐺 . (Provided 𝜋𝐺 < 𝑐 for some arbitrary large
constant 𝑐 and 𝐺 is an expander graph.)
If we succeed in creating such a general transformation, we can

double the fault rate repeatedly to obtain a graph with a "high" fault
rate. There are multiple ways to create such a transformation. The
original paper ([Arora and Safra 1998], [Arora et al. 1998]) used
special error-correcting codes, whose roots lie in the field of coding
theory. At this point, the connection between the problem we’re
solving and coding theory should be somewhat intuitive, but due
to the complexity of this solution, we do not study it here. Instead,
we turn to a newer, more understandable solution by [Dinur 2007]
based on ideas of gap amplification with expander graphs8. Here,
we present some intuition for the core ideas of [Dinur 2007]’s proof:

5.3.2 Step 0: Preprocess. As a first step, we take any graph 𝐺 and
embed it in a larger expander graph 𝐻 such that |𝑉𝐻 | ≤ 𝑐 · |𝑉𝐺 | for
some constant 𝑐 . There are multiple simple ideas to accomplish this,
so we omit too much detail. One example method for a constant-
degree graph 𝐺 would be to take the union of edges in 𝐺 and some
other constant degree expander graph 𝐺 ′ with the same set of ver-
tices.

5.3.3 Step 1: Inhale. Let 𝐺 = (𝑉𝐺 , 𝐸𝐺). Define 𝐻 = (𝑉𝐻 , 𝐸𝐻).
𝑉𝐻 = 𝑉𝐺 and 𝐸𝐻 = {(𝑢, 𝑣) : 𝑑𝑖𝑠𝑡𝐺 (𝑢, 𝑣) ≤ 𝑡} for some constant
𝑐 . Further, for each node 𝑣 ∈ 𝑉𝐺 , let 𝐶𝑂𝐿𝑣 be the set of "local"
colouring of 𝑣 and its neighbourhood 𝑁𝑣 : i.e. a colouring of just the
neighbourhood of the node 𝑣 . Informally, a "local" colouring of a
node is some valid colouring of the subgraph of the node and its
neighbours in the larger graph. Then, for each edge (𝑢, 𝑣) ∈ 𝐸𝐻 , we
can check the consistency of the local colourings 𝐶𝑂𝐿𝑢 and 𝐶𝑂𝐿𝑣 .
Two neighbouring local colourings are "consistent" if the colourings

8Informally, edge expander graphs refer to undirected multigraphs in which every
subset of vertices that is not "very large" itself has a "large" neighbourhood. While
details vary by use case, "very large" can be intuitively thought of as 𝑝𝑜𝑙𝑦 (|𝑉 |) and
"large" as at least a constant in our case.

6 • Nalin Bhardwaj

Fig. 2. Example of a sheaf over a graph: The green and orange highlights
show two neighbourhoods with some overlapping nodes. The colourings in
the dotted green and orange circles are both "local" colourings of the neigh-
bourhoods, and we look for consistencies in the local colourings (specifically
in the colourings of the nodes connected by purple lines, since those repre-
sent the same nodes in the original graph)

of the nodes in the intersection 𝑁𝑢 ∩ 𝑁𝑣 can be assigned in a man-
ner consistent with each other. Similar to before, in this new graph

𝑔((𝑢, 𝑣)) =
{
0 if 𝐶𝑂𝐿(𝑢) is consistent with 𝐶𝑂𝐿(𝑣)
1 otherwise

∀(𝑢, 𝑣) ∈ 𝐸𝐻

and we have properties similar to the ones previously described,
but on 𝐻 . Notably, we can prove that 𝛿 (𝐻) ≥ 2 · 𝛿 (𝐺). An intuitive
explanation of why this happens is based on the properties of ex-
pander graph. In essence, we’ve taken a sheaf over balls of radius 𝑡
in 𝐺 , and any faulty edge in this ball is propagated to balls around
it. This way, we’re "spreading" the errors in any individual edge to
edges in the vicinity.

5.3.4 Step 2: Exhale. One critical mismatch between the properties
of 𝐻 and the aforementioned definitions in 𝐺 , however, is that we
don’t naturally have a 3-colouring of𝐻 that we can use to repeat the
process of doubling 𝛿 . The solution to this problem is to use a weaker
form of the 𝑃𝐶𝑃 theorem recursively to return 𝐻 to a 3-colouring.
Without getting into the technical details, this is a "solved" problem
by the use of PCP encoding in the form of a local replacement gadget.
For instance, one method is based on Hadamard encoding/linearity
testing ideas (see [Dinur 2007] theorem 1.8 for more information).
In total, we’ve created a gap amplification algorithm that with

each round of inhale and exhale spreads the faulty edges around the
graph to obtain a new graph that has 𝑂 (𝑐 · |𝐺 |) (for some constant

𝑐) vertices. We only need to perform this doubling a logarithmic
number of times, so we’ve obtained a transformation to a new graph
where we only need to run the protocol we started within section 3.1
a constant number of times to be confident in the provers witness.

5.4 Hardness of Approximation
We now make a quick note about the consequences of the 𝑃𝐶𝑃

theorem on the hardness of approximation. We know that finding a
3-colouring is a hard problem (unless 𝑃 = 𝑁𝑃). But perhaps, let’s
consider the problem of finding a 3-colouring that’s almost correct,
say, it satisfies 99.99% of the edges in the graph. Is this problem also
hard?

Say we use the transformation described in the previous section
to obtain a representation𝐻 of any graph𝐺 . If we have an algorithm
to correctly color at least 99.99% of the edges, we would have been
able to use it on this transformed graph 𝐻 , and then, since we’ve
obtained a colouring that fails for fewer edges than the previously
described "gap", it must be that this colouring of 𝐻 corresponds to
a colouring of 𝐺 that is perfect. But then, we would have an algo-
rithm for perfectly 3-colouring any graph𝐺 . So, even approximating
colouring must be hard!
It is quite cool to see that a result that started from the study of

vanilla interactive protocols has yielded us an extremely powerful
complexity theory result at large: approximation is hard. Interest-
ingly enough, this connection between 𝑃𝐶𝑃 and the hardness of
approximation was made in [Feige et al. 1991] even before the actual
theorem itself was proven.

6 FROM PCP TO CRYPTOGRAPHIC PROOFS9

Now that we know that in theory, it is possible to create efficient
proofs that only require reading a few bits of the proof and only re-
quire a small amount of randomness, we consider how to construct
an actual SNARG — a succinct non-interactive argument of knowl-
edge — that can accomplish this. Then, we’ll use this foundation to
build up SNARGs into SNARKs/STARKs that additionally achieve
knowledge soundness.

6.1 Succinctness: Kilian’s Notarised Envelopes
The first attempt at productionising 𝑃𝐶𝑃 was made by [Kilian 1992]
in his protocol based on the idea of "Notarised envelopes" powered
by Merkle trees.

Essentially, Merkle trees allow a prover to commit to a long string
(say 𝜋) and generate proofs that 𝜋𝑖 = 𝑥 for some index 𝑖 in the
string. Merkle trees depend on collision-resistant hashing and work
by constructing a binary tree of commitments of subranges on
top of the original string, much like the cumulation in classic data
structures like segment trees or Fenwick trees.

Let’s say a prover is trying to prove to a verifier that some input
𝑥 ∈ 𝐿 such that 𝐿 has a 𝑃𝐶𝑃 proof system.

Clearly, this protocol is quite succinct! The verifier makes only a
constant number of queries, and each query is answeredwithMerkle
path proofs of logarithmic length of the PCP proof system. Secondly,
this protocol is sound. Since the prover commits the entire 𝑃𝐶𝑃

proof 𝜋 independent of the bits that are checked by the verifier, the

9This section is based on [Nitulescu [n.d.]]

A Succinct Story of Zero Knowledge • 7

Fig. 3. Example construction of a merkle tree from a 𝑃𝐶𝑃 string 𝐴

1: Verifier sends a collision-resistant hash function 𝐻 , to be used
by the prover for the Merkle tree construction.

2: Prover uses the witness for 𝑥 to construct a 𝑃𝐶𝑃𝜋 for the input
𝑥 ∈ 𝐿. It then constructs a Merkle tree using 𝜋 at the leaves and
sends the Merkle tree root hash back to the verifier.

3: The verifier then samples𝑂 (log𝑛) randomness bits for the 𝑃𝐶𝑃
verification and sends them to the prover.

4: The prover computes a set of indices, say 𝑟1, 𝑟2 . . . 𝑟𝑘 to query
in the 𝑃𝐶𝑃 proof based on the verifier’s randomness and opens
𝜋𝑟1 , 𝜋𝑟2 , . . . 𝜋𝑟𝑘 , generating Merkle path proofs for each of the
indices, and sends them back to the verifier.

5: The verifier passes if the openings for each of the indices are
valid and if a 𝑃𝐶𝑃 verifier running with the generated random-
ness would have opened those exact indices.

Protocol 2: Kilian’s Merkle Tree 𝑃𝐶𝑃 protocol

soundness of this protocol is essentially equivalent to the soundness
of the underlying 𝑃𝐶𝑃 proof system. Note that this protocol is a
plain SNARG, so it does not attempt to be zero-knowledge.

Notice that this described protocol is not quite interactive. While
Kilian’s protocol is theoretically sufficient to obtain a succinct proof
exploiting the locally checkable property of 𝑃𝐶𝑃s, in practice, having
the ability to performmultiple rounds in an interactive proof is quite
useful (reasons for this are detailed in [Ben-Sasson et al. 2016]). With
this motivation, [Ben-Sasson et al. 2016] described a very natural
extension of [Kilian 1992]’s protocol that combines both aspects
to create a hybrid construct: a 𝑃𝐶𝐼𝑃 . Like the moniker suggests, a
𝑃𝐶𝐼𝑃 is simply 𝑃𝐶𝑃 followed by an 𝐼𝑃 . Instead of simply sending
and querying a single 𝑃𝐶𝑃 proof, the verifier is allowed to respond
with random challenges after the first round, and each time the
prover generates additional 𝑃𝐶𝑃 strings to convince the verifier
more reliably.

6.2 Non-interactive: Fiat-Shamir heuristic
Next, we look at a heuristic that takes any interactive𝐴𝑀 proof and
converts it into a non-interactive proof. Practically, non-interactivity
unlocks several powerful use cases. On blockchains, for instance,
this allows for a verifiable ledger for the proof since it’s signifi-
cantly easier to verify non-interactive proofs in a distributed system
settings.
The original idea of the heuristic was presented in [Fiat and

Shamir 1987] for a specific problem and easily generalised to any
non-interactive public coin protocol. The primary idea of the heuris-
tic is to use one random number and repeatedly hash it to obtain
more randomness and replace the public coins in the original proto-
col with this new randomness.

To prove the security of such a transformation, the hash function
is modelled in the Random Oracle Model (ROM) (from [Bellare and
Rogaway 1993] and [Canetti et al. 2004]) as a truly random function.
In practice, since such truly random hash functions do not exist, this
model of security is somewhat weak and depends on the assumption
that there exist "good enough" hash functions in practice that make
any attacks infeasible.
With the power of the Fiat-Shamir heuristic in mind, we turn

again to Kilian’s protocol. Applying the collision-resistant hash
function 𝐻 to the Merkle root hash of the 𝑃𝐶𝑃 string 𝜋 , we can
obtain new randomness under the heuristic. So, we can just use
this to generate the verifier’s 𝑃𝐶𝑃 queries, converting the original
four-round interactive protocol into a non-interactive one! The
formalization of this non-interactive construction is credited to
[Micali 1994].

6.3 Zero-Knowledge Arguments: PIR + ECRH
Next, let’s think about adapting Kilian’s protocol to be zero-knowledge.
To do so, we first define two primitives:

6.3.1 Private Information Retrieval: PIR. PIR is a protocol that al-
lows a user to retrieve items from a server that possesses some
database without revealing information about the item retrieved.
For our purposes, it is sufficient to formalise a PIR protocol to consist
of 3 algorithms:

(1) 𝐸𝑁𝐶 which inputs some query, say 𝑞, and returns an en-
crypted representation of it, say 𝑄 .

(2) 𝐸𝑉𝐴𝐿 which outputs an encrypted answer, say 𝐴𝑄 , to an
encrypted database query 𝑄

(3) 𝐷𝐸𝐶 which decrypts an encrypted answer 𝐴𝑄 into the con-
stituent database items

If we assume we can create such algorithms succinctly and se-
curely, a user can encrypt their query using 𝐸𝑁𝐶 , ask the server
to generate an answer using 𝐸𝑉𝐴𝐿 and decrypt the answer using
𝐷𝐸𝐶 .

6.3.2 Extractable Collision-Resistant Hash: ECRH. is a collision-
resistant hash function for which it is possible to algorithmically
"extract" a pre-image for any output in the image of the function.
That is, for an ECRH 𝑓 , given 𝑦 ∈ 𝐼𝑚(𝑓), we can find 𝑥 such that
𝑓 (𝑥) = 𝑦.
With these two primitives, we turn again to Kilian’s protocol and

consider how we can use them.

8 • Nalin Bhardwaj

[Di Crescenzo and Lipmaa 2008] first discovered a use-case for
𝑃𝐼𝑅 modifying Kilian’s protocol. As a first message, the verifier may
send a 𝑃𝐼𝑅-encrypted encoding of the 𝑃𝐶𝑃 queries. Then, the prover
can assemble a large database of every possible query a verifier
could have made (along with Merkle path proofs that satisfy their
committed root hash), and then use this database to 𝑃𝐼𝑅-evaluate the
verifier’s queries and send them back. We can see why this modified
protocol is sound: a prover essentially needs to be honest to be able
to assemble valid answers to the 𝑃𝐼𝑅 encrypted queries. Notice that
even as a standalone, this method can be used to transform Kilian’s
interactive protocol into a non-interactive one without depending
on the security of the Fiat-Shamir heuristic.
Next, we look at the [Bitansky et al. 2017] construction, which

builds on [Di Crescenzo and Lipmaa 2008] in an extremely in-
teresting way. Their primary idea is to use a protocol similar to
[Di Crescenzo and Lipmaa 2008], but replace the𝐶𝑅𝐻𝐹 in theMerkle
tree constructionwith an 𝐸𝐶𝑅𝐻 . They alsomodify the [Di Crescenzo
and Lipmaa 2008] protocol to 𝑃𝐼𝑅-encrypt a verifiers random coins
(instead of their actual queries), allowing verifiers to run offline —
independent of particular instances of a prover.
Essentially, 𝐸𝐶𝑅𝐻 ’s extractability allows their construction to

take a root hash for a Merkle tree and extract it out all the way to the
leaves, i.e. extract out an entire proof by just recursively applying the
extraction algorithm for 𝐸𝐶𝑅𝐻 . Naively doing so, however, would
incur an additional polynomial-time blowup with each level, so
we can only extract 𝑂 (1) times in practice. To deal with this, they
modify the structure of the Merkle tree, making it so each internal
node can have a polynomial number of children rather than just
binary.

With this change, we can start to see howwe can showKnowledge
soundness for the protocol. To convince a verifier, the recursively
extracted string must contain valid answers to the PCP queries
specified in its PIR queries. If not, we can show by a reduction
that we can find collisions within the hash function. In particular, a
collision finder could simulate the 𝑃𝐼𝑅-encryption and obtain two
paths that map to the same root but must differ somewhere (as one
is satisfying and the other is not), obtaining a collision.
Further, if the verifier extracts a set of arbitrary leaves that are

satisfying with respect to the 𝑃𝐼𝑅-encrypted queries, the same set
of leaves must also be satisfying for almost all other possible PCP
queries and are thus sufficient for witness-extraction. Formally, we
can see a contradiction as if this was not the case then one would
be able to use the polynomial-size extraction circuit to break the
security of the 𝑃𝐼𝑅.
The [Bitansky et al. 2017] construction is quite clever overall. It

achieves a communication complexity and a verifier time complexity
that is polynomial in the security parameter, the size of the instance,
and log of the time it takes to verify a valid witness for the instance,
obtaining full succinctness!

6.4 ZK-SNARKs
It is no surprise that the bolded letters of previous parts of this
section spell out ZK-SNARKs — it is because they have together
defined all the pieces necessary to create a fully working zk-SNARK!

Fig. 4. Steps in the compilation of a zero-knowledge SNARK. Source: Un-
known, but appears to be frequently credited to cryptographer Eran Tromer.

While this implementation of zk-SNARKs is not quite the state of
the art, it is extremely close and was only put together in its entirety
in 2014 (by preprints of [Bitansky et al. 2017]).

Having wade through this long journey between complexity the-
ory and cryptography, we leave the reader with a stanza from Lewis
Carroll’s The Hunting of the Snark:

For the Snark’s a peculiar creature, that won’t
Be caught in a commonplace way.
Do all that you know, and try all that you don’t:
Not a chance must be wasted today!

7 STATE-OF-THE-ART SNARKS: FROM CODE TO
PROOFS10

At this level of understanding, while it should make sense that at
least in theory, we can write succinct zero-knowledge proofs for any
problems in 𝑁𝑃 , practically generating zero-knowledge proofs for
arbitrary pieces of computation still feels like an opaque problem. So,
we now turn to the state-of-the-art production zk-SNARK schemes.
Many of these involve quite a few more interesting pieces that come
together to create a much more "generalised" zk-SNARK. Given that
these constructions involve a decent bit of math/cryptography, we’ll
only focus on a high-level overview of how these schemes convert
code to proofs:

10This section is based on [Gabizon 2017].

A Succinct Story of Zero Knowledge • 9

7.1 Code: Arithmetic Circuits
Of course, first, when we say "code", we need to define a formal
encoding of this "code". We start with an arithmetic circuit represen-
tation of our computation: an arithmetic circuit consists of gates
performing addition and multiplication, and wires that carry val-
ues in a field F. Notice that the more common boolean circuits can
be converted to arithmetic circuits using some simple algebraic
manipulation.
Reasons for choosing this particular encoding will be clearer as

we go forward, but for now, we note the from standard complexity
theory the result that polynomial sized circuits are equivalent to
polynomial-time Turing machines (up to a log factor) so, at the very
least, circuits are powerful encodings for any computation we might
want to do.

Practically, code for zk-SNARKs is most commonly written us-
ing the circuit language Circom11, which was designed by iden3
particularly for this purpose. As one would expect from such novel
technology, Circom is quite low-level and feels much like Verilog or
other circuit simulating programming languages.

7.2 Rank-1 Constraint System: R1CS
Next, we take our arithmetic circuit and convert it into an R1CS. An
R1CS is a sequence of three vectors {𝑎, 𝑏, 𝑐} and a solution vector 𝑠 ,
where the equation (𝑎 · 𝑠) · (𝑏 · 𝑠) = (𝑐 · 𝑠), i.e. the product of the
dot products of 𝑎 and 𝑏 with 𝑠 equals the dot product of 𝑐 with 𝑠 .
You may convince yourself that we can transform any gates into
constraints of this form with some simple algebraic manipulation
on the inputs and outputs of a gate. By creating such constraints,
we’ll have a tuple (𝑎, 𝑏, 𝑐) of vectors. Each vector would have size
equal to the total number of inputs to all the gates in the circuit, say
𝑁 , for future reference.

7.3 Quadratic Arithmetic Programs: QAP
A QAP is pretty much just an R1CS that is represented as a poly-
nomial. We’ve already seen some ideas to perform such a transfor-
mation in 2.2, so we omit much detail, but simply note that this
transformation uses Lagrange interpolation to go from groups of
three vectors of length 𝑛 to 𝑛 groups of three degree-3 polynomials,
where evaluating the polynomials at each 𝑥 coordinate represents
one of the gates in the original circuit. Essentially, a QAP is the
transformation of a large 𝑛 constraint R1CS to a single polynomial
expressing all the constraints of the circuit, making any checks and
further applications much more efficient.

7.4 Linear Interactive Proof/Polynomial Interactive Oracle
Proof

At this point, different constructions introduce different ideas for
checking a QAP as a zero-knowledge proof. Omitting the mathe-
matical details, every scheme finds a way to efficiently hide 𝑠 , while
proving its existence to the verifier. There are two primary ways to
achieve this:

(1) Linear Interactive Proof (𝐿𝐼𝑃) is an interactive proof where
every message sent by a prover (including malicious ones)

11https://docs.circom.io

must be a linear function of the previous messages sent by
the verifier. [Bitansky et al. 2013c] show a transformation
from any 𝑃𝐶𝑃 into a Linear 𝑃𝐶𝑃 (a 𝑃𝐶𝑃 where the "honest"
function must be a linear function) and further, a transfor-
mation from a linear 𝑃𝐶𝑃 into a two-message 𝐿𝐼𝑃 , and then
construct a SNARK from 𝐿𝐼𝑃s with low-degree verifiers.
These are essentially generalisations of [Groth 2010] and
[Gennaro et al. 2013] constructions.

(2) Polynomial Interactive Oracle Proof In a Polynomial Inter-
active Oracle Proof (PIOP), the prover sends low degree
polynomials to the verifier, and rather than reading the en-
tire list of coefficients, the verifier queries evaluations of
these polynomials at random points, and combined with the
Fiat-Shamir heuristic, this yields a zk-SNARK.

7.5 Kate Commitments
While we have not gone into a lot of detail about 𝑃𝐼𝑂𝑃 proof con-
struction, Kate commitments are the underlying cryptographic prim-
itive that enables them. Even outside of the study of zk-SNARKs,
polynomial commitments are highly ubiquitous, so we make a short
note on the general construct of polynomial commitments.
Kate commitments, or KZG commitments, are a commitment

scheme introduced by [Kate et al. 2010] that are extremely powerful
constructs that allow a prover to commit a polynomial and show
evaluations of that polynomial on any point with a single group
element-sized proof in constant time. As such, Kate commitments
and its variants lie at the heart of many 𝑃𝐼𝑂𝑃-style zk-SNARK
constructions (such as Marlin from [Chiesa et al. 2020a] and PLONK
from [Gabizon et al. 2019]).

We also write a short note on the use of KZG commitments as a
vector commitment in Appendix A.

8 OPEN QUESTIONS & FUTURE WORK

8.1 Fiat-Shamir-Compatible Hash Functions
Earlier, we described the limitation of the Fiat-Shamir heuristic in
that its security is so far only proven in the Random Oracle Model,
which, of course, are somewhat shaky grounds to build on. It remains
an open question whether there exist concrete hash functions that
are compatible with the Fiat Shamir heuristic, i.e. if there exist hash
functions that guarantee soundness for a transformed proof (and
are also compatible with zero-knowledge proofs). There has been
a lot of work on this topic, but there is still no known universal
hash function that can be proven to be compatible without making
strong, somewhat impractical, assumptions yet. On one hand, there
has been research such as [Bitansky et al. 2013b] which shows that
for three-round proofs, Fiat-Shamir transform using a concrete hash
family cannot be proven to be sound via black-box reduction to
standard hardness assumptions. On the other hand, recent work
such as [Canetti et al. 2019] has shown constructions for a class of
protocols whose security can be proven under assumptions stronger
than the original hardness assumptions.

8.2 Recursive ZK Proofs
Recursive zero-knowledge SNARKs are one of the most interesting
use cases for zero-knowledge technology that are almost ready for

https://docs.circom.io

10 • Nalin Bhardwaj

practical use. As the name suggests, recursive ZK SNARKs unlock
the ability to take a proof and verify it inside another proof, allowing
for a lot more composability without blowing up proving/verifying
times. Besides the real-world composability advantages, recursive
zero-knowledge SNARKs are also of great interest because of their
use case as a blockchain scaling solution, relying on the succinct-
ness feature of SNARKs to compress secure verification of long
blockchains. Mina Protocol ([Bonneau et al. 2020]) is currently im-
plementing such an approach.
It should, however, come as no surprise that efficient recursive

ZK SNARK constructions are quite hard to pull off. With the typical
method of SNARK constructions that uses elliptic curve fields, the
initial, hairy problem to solve is to find a pairing-friendly curve
(see [Bitansky et al. 2013a]). Attempting to solve for this yields
many interesting tradeoffs. Many of the options and possibilities
have been explored in recent works such as Halo [Bowe et al. 2019],
which uses elliptic curve cycles that do not require pairings and
Fractal [Chiesa et al. 2020b], that eliminates the use of elliptic curves
altogether. Overall, the study of efficient recursive ZK proofs is of
great importance, and ripe territory for further exploration.

8.3 Post-Quantum Zero-Knowledge
Many of the techniques described in previous sections depend on
the computational hardness of certain problems, such as computing
the discrete logarithm, which have been shown solvable by quantum
computers in polynomial time by [Shor 1997]. Therefore, quantum
computers may pose a significant threat to the security model and
practicality of zk-SNARKs that use these techniques. There has been
some work on making quantum attack resistant zk-SNARKs. For
instance, [Gennaro et al. 2018] recently proposed a lattice-based
zk-SNARK starting with SSP — square span programs (an alternative
to the QAP intermediate for boolean circuits). Lattice problems are
known to hold against quantum attacks [Ajtai 1996], so this is a
very promising line of work.

8.4 Optimisations
While this isn’t of much complexity theory interest, there has re-
cently been a lot of work on improving the constant factor on
verifying/constructing zk-SNARKs. Interestingly, besides just time,
the practical use of SNARKs on blockchains such as Ethereum has
motivated research aiming to optimise SNARK "gas" consumption.
There is a monetary cost, called the gas cost, associated with each
instruction executed in Ethereum smart contracts, so it is of signifi-
cant practical utility to find ways to reduce the gas costs associated
with verifying zero-knowledge proofs on blockchains. For instance,
[Gabizon and Williamson 2021]’s FFLONK, a modification of the
popular PLONK zk-SNARK scheme, was motivated by gas cost re-
duction. They discovered a modification to KZG commitments that
allows for reducing the scalar multiplications necessary to verify
the proof by nearly three times, albeit at the cost of almost tripling
proof construction time. For reference, each scalar multiplication
costs ∼ 6000 gas, or $4USD in Ethereum at the time of writing.

ACKNOWLEDGMENTS
I would like to thank Prof. Shachar Lovett and the staff of the UC
San Diego class CSE 200: Computational Complexity12 who allowed
me, an undergraduate student, to be part of their graduate class
offering in the first place, and motivated and allowed me to work
on this research paper as a final project for the class.
Additionally, I would like to thank members of 0xPARC13 and

Ethereum Foundation14. While they have not directly supported
this research project, they’ve supported related projects and explo-
rations of mine and I was certainly inspired to study zero-knowledge
cryptography due to their work in this field in the first place.

A KATE COMMITMENTS AS VECTOR COMMITMENTS
While we haven’t discussed Kate Commitment construction in detail,
beyond themath of how theywork, I find their use cases significantly
more insightful. One way to characterise this power is to consider
Kate commitments in comparison with Merkle trees (the construct
used in Kilian’s protocol). In general, commitments like the Merkle
tree are called "vector" commitments. A vector commitment is one
that allows someone to commit of a vector, and provides the ability
to reveal any bits of this commitment with an "opening" proof.
Let’s say we wanted to construct a vector commitment scheme

using Kate commitments. So, we have a vector we want to encode
as a polynomial. To do so, we can use Lagrange interpolation. Then,
using Kate commitments, we can prove the value any subset of this
vector with just one group element! In contrast, if you’re using
Merkle trees, you would require 𝑂 (log𝑛) size path proofs for each
element you want to prove.
On this train of thought, it is also interesting to note the con-

struction of Verkle Trees([Kuszmaul 2019]), which are essentially a
vector commitment scheme built using KZG commitments. They
can emulate all features of Merkle tree, but more efficiently. Inci-
dentally, the state trie – the trie containing information about a
blockchain block – in the Ethereum blockchain is encoded using
a Merkle tree. Given the practical advantages of time and space
efficiency, Verkle Trees are also set to replace Merkle trees as the
state trie data structure in the upcoming Ethereum upgrades.

REFERENCES
2020. Negligible function. https://en.wikipedia.org/w/index.php?title=Negligible_

function&oldid=979710421 Page Version ID: 979710421.
2021. Security parameter. https://en.wikipedia.org/w/index.php?title=Security_

parameter&oldid=1026505640 Page Version ID: 1026505640.
Miklós Ajtai. 1996. Generating hard instances of lattice problems. In Proceedings of the

twenty-eighth annual ACM symposium on Theory of computing. 99–108.
Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. 1998.

Proof verification and the hardness of approximation problems. Journal of the ACM
(JACM) 45, 3 (1998), 501–555.

Sanjeev Arora and Shmuel Safra. 1998. Probabilistic checking of proofs: A new charac-
terization of NP. Journal of the ACM (JACM) 45, 1 (1998), 70–122.

László Babai, Lance Fortnow, and Carsten Lund. 1991. Non-deterministic exponential
time has two-prover interactive protocols. Computational complexity 1, 1 (1991),
3–40.

Mihir Bellare and Phillip Rogaway. 1993. Random Oracles Are Practical: A Paradigm for
Designing Efficient Protocols. In Proceedings of the 1st ACM Conference on Computer
and Communications Security (Fairfax, Virginia, USA) (CCS ’93). Association for

12https://cseweb.ucsd.edu//classes/fa21/cse200-a/
13https://0xparc.org
14https://ethereum.foundation

https://en.wikipedia.org/w/index.php?title=Negligible_function&oldid=979710421
https://en.wikipedia.org/w/index.php?title=Negligible_function&oldid=979710421
https://en.wikipedia.org/w/index.php?title=Security_parameter&oldid=1026505640
https://en.wikipedia.org/w/index.php?title=Security_parameter&oldid=1026505640
https://cseweb.ucsd.edu//classes/fa21/cse200-a/
https://0xparc.org
https://ethereum.foundation

A Succinct Story of Zero Knowledge • 11

Computing Machinery, New York, NY, USA, 62–73. https://doi.org/10.1145/168588.
168596

Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. 1988. Multi-Prover
Interactive Proofs: How to Remove Intractability Assumptions. In Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing (Chicago, Illinois, USA)
(STOC ’88). Association for Computing Machinery, New York, NY, USA, 113–131.
https://doi.org/10.1145/62212.62223

Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. 2016. Interactive oracle
proofs. In Theory of Cryptography Conference. Springer, 31–60.

Charles H. Bennett and John Gill. 1981. Relative to a Random Oracle A, PA != NPA !=
co-NPA with Probability 1. SIAM J. Comput. 10 (1981), 96–113.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad
Rubinstein, and Eran Tromer. 2017. The hunting of the SNARK. Journal of Cryptology
30, 4 (2017), 989–1066.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2013a. Recursive
composition and bootstrapping for SNARKs and proof-carrying data. In Proceedings
of the forty-fifth annual ACM symposium on Theory of computing. 111–120.

Nir Bitansky, Dana Dachman-Soled, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai,
Adriana Lopez-Alt, and Daniel Wichs. 2013b. Why “Fiat-Shamir for Proofs" Lacks a
Proof. In 10th Theory of Cryptography Conference, Vol. 7785. 181. https://doi.org/10.
1007/978-3-642-36594-2_11

Nir Bitansky, Dana Dachman-Soled, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai,
Adriana López-Alt, and Daniel Wichs. 2013c. Why “fiat-shamir for proofs” lacks a
proof. In Theory of cryptography conference. Springer, 182–201.

Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. 2020. Mina: Decen-
tralized Cryptocurrency at Scale. (2020).

Sean Bowe, Jack Grigg, and Daira Hopwood. 2019. Recursive proof composition without
a trusted setup. Cryptol. ePrint Arch., Tech. Rep 1021 (2019), 2019.

Vitalik Buterin. 2019. Minimal anti-collusion infrastructure. https://ethresear.ch/t/
minimal-anti-collusion-infrastructure/5413

Vitalik Buterin. 2021. vitalik.eth on Twitter. https://twitter.com/VitalikButerin/status/
1433228277263462401

Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. 2019. Fiat-Shamir: From Practice to Theory. In Proceed-
ings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (Phoenix,
AZ, USA) (STOC 2019). Association for Computing Machinery, New York, NY, USA,
1082–1090. https://doi.org/10.1145/3313276.3316380

Ran Canetti, Oded Goldreich, and Shai Halevi. 2004. The random oracle methodology,
revisited. Journal of the ACM (JACM) 51, 4 (2004), 557–594.

Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas P. Ward. 2020a. Marlin: Preprocessing zkSNARKs with Universal and Up-
datable SRS. In 39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings (Lecture
Notes in Computer Science, Vol. 12105). Springer. https://doi.org/10.1007/978-3-030-
45721-1_26

Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. 2020b. Fractal: Post-quantum and
transparent recursive proofs from holography. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer, 769–793.

Dark Forest Team. 2020. Announcing Dark Forest. https://blog.zkga.me/announcing-
darkforest

Giovanni Di Crescenzo andHelger Lipmaa. 2008. Succinct NP proofs from an extractabil-
ity assumption. In Conference on Computability in Europe. Springer, 175–185.

Irit Dinur. 2007. The PCP theorem by gap amplification. Journal of the ACM (JACM)
54, 3 (2007), 12–es.

U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. 1991. Approximating clique
is almost NP-complete. In [1991] Proceedings 32nd Annual Symposium of Foundations
of Computer Science. 2–12. https://doi.org/10.1109/SFCS.1991.185341

Amos Fiat and Adi Shamir. 1987. How To Prove Yourself: Practical Solutions to Identifi-
cation and Signature Problems. In Advances in Cryptology — CRYPTO’ 86, AndrewM.
Odlyzko (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 186–194.

Ariel Gabizon. 2017. Explaining SNARKs Part I: Homomorphic Hidings. https:
//electriccoin.co/blog/snark-explain/

Ariel Gabizon and Zachary J Williamson. 2021. fflonk: a Fast-Fourier inspired verifier
efficient version of PlonK. Cryptology ePrint Archive (2021).

Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. 2019. PLONK: Permutations
over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge.
Cryptology ePrint Archive, Report 2019/953. https://ia.cr/2019/953.

Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. 2013. Quadratic
span programs and succinct NIZKs without PCPs. InAnnual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer, 626–645.

Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele Orrù. 2018. Lattice-
based zk-SNARKs from square span programs. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. 556–573.

Alex Gluchowski. 2021. Introducing ZK Sync: the missing link to mass adoption of
Ethereum. https://blog.matter-labs.io/introducing-zk-sync-the-missing-link-to-
mass-adoption-of-ethereum-14c9cea83f58

Lior Goldberg, Shahar Papini, and Michael Riabzev. 2021. Cairo–a Turing-complete
STARK-friendly CPU architecture. Cryptology ePrint Archive (2021).

Oded Goldreich. 2011. In a world of P= BPP. In Studies in Complexity and Cryptography.
Miscellanea on the Interplay between Randomness and Computation. Springer, 191–
232.

Oded Goldreich, Silvio Micali, and Avi Wigderson. 1991. Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems. Journal of
the ACM (JACM) 38, 3 (1991), 690–728.

Jens Groth. 2010. Short pairing-based non-interactive zero-knowledge arguments. In
International Conference on the Theory and Application of Cryptology and Information
Security. Springer, 321–340.

Irit Dinur. 2019. The PCP theorem. https://www.ias.edu/video/HermannWeyl/2019/
1118-IritDinur publisher: Institute for Advanced Study.

Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. 2010. Constant-Size Commit-
ments to Polynomials and Their Applications. In Advances in Cryptology - ASI-
ACRYPT 2010, Masayuki Abe (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
177–194.

Jonathan Katz. 2011. Notes on Complexity Theory: Lecture 19. https://www.cs.umd.
edu/~jkatz/complexity/f11/lecture19.pdf. [Online; accessed 27-Dec-2021].

Joe Kilian. 1992. A note on efficient zero-knowledge proofs and arguments. In Proceed-
ings of the twenty-fourth annual ACM symposium on Theory of computing. 723–732.

John Kuszmaul. 2019. Verkle trees. Verkle Trees (2019), 1–12.
Dror Lapidot and Adi Shamir. 1997. Fully Parallelized Multi-prover Protocols for NEXP-

Time. J. Comput. System Sci. 54, 2 (1997), 215–220. https://doi.org/10.1006/jcss.1997.
1238

Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. 1992. Algebraic
Methods for Interactive Proof Systems. J. ACM 39, 4 (oct 1992), 859–868. https:
//doi.org/10.1145/146585.146605

Silvio Micali. 1994. CS proofs. In Proceedings 35th Annual Symposium on Foundations of
Computer Science. IEEE, 436–453.

Anca Nitulescu. [n.d.]. zk-SNARKs: A Gentle Introduction. ([n. d.]).
Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran

Tromer, and Madars Virza. 2014. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE, 459–474.

Adi Shamir. 1992. IP = PSPACE. J. ACM 39, 4 (oct 1992), 869–877. https://doi.org/10.
1145/146585.146609

A. Shen. 1992. IP = SPACE: Simplified Proof. J. ACM 39, 4 (oct 1992), 878–880. https:
//doi.org/10.1145/146585.146613

Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM J. Comput. 26, 5 (oct 1997), 1484–1509.
https://doi.org/10.1137/S0097539795293172

Michael Sipser. 1996. Introduction to the Theory of Computation (1st ed.). International
Thomson Publishing.

StarkWare. [n.d.]. StarkNet. https://starkware.co/starknet/
Salil Vadhan. 2007. The complexity of zero knowledge. In International Conference

on Foundations of Software Technology and Theoretical Computer Science. Springer,
52–70.

https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/62212.62223
https://doi.org/10.1007/978-3-642-36594-2_11
https://doi.org/10.1007/978-3-642-36594-2_11
https://ethresear.ch/t/minimal-anti-collusion-infrastructure/5413
https://ethresear.ch/t/minimal-anti-collusion-infrastructure/5413
https://twitter.com/VitalikButerin/status/1433228277263462401
https://twitter.com/VitalikButerin/status/1433228277263462401
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_26
https://blog.zkga.me/announcing-darkforest
https://blog.zkga.me/announcing-darkforest
https://doi.org/10.1109/SFCS.1991.185341
https://electriccoin.co/blog/snark-explain/
https://electriccoin.co/blog/snark-explain/
https://ia.cr/2019/953
https://blog.matter-labs.io/introducing-zk-sync-the-missing-link-to-mass-adoption-of-ethereum-14c9cea83f58
https://blog.matter-labs.io/introducing-zk-sync-the-missing-link-to-mass-adoption-of-ethereum-14c9cea83f58
https://www.ias.edu/video/HermannWeyl/2019/1118-IritDinur
https://www.ias.edu/video/HermannWeyl/2019/1118-IritDinur
https://www.cs.umd.edu/~jkatz/complexity/f11/lecture19.pdf
https://www.cs.umd.edu/~jkatz/complexity/f11/lecture19.pdf
https://doi.org/10.1006/jcss.1997.1238
https://doi.org/10.1006/jcss.1997.1238
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146613
https://doi.org/10.1145/146585.146613
https://doi.org/10.1137/S0097539795293172
https://starkware.co/starknet/

	Abstract
	1 Introduction
	2 Interactive Proofs: IP
	2.1 Deterministic IP = NP
	2.2 IP = PSPACEThis section is based on jkatz.
	2.3 Arthur-Merlin Games

	3 Zero Knowledge
	3.1 Graph 3-coloringThis section is due to goldreich1991proofs

	4 Multiprover interactive proofs: MIP
	5 PCP: Succinctness and the Hardness of Approximation
	5.1 PCP theorem: NP = PCP[O(logn), O(1)]
	5.2 Simpler PCP results
	5.3 NP = PCP[O(logn), O(1)]This section is primarily based on a Lecture Series by Irit Dinur, starting with iritdinurpcp2019.
	5.4 Hardness of Approximation

	6 From PCP to cryptographic proofs
	6.1 Succinctness: Kilian's Notarised Envelopes
	6.2 Non-interactive: Fiat-Shamir heuristic
	6.3 Zero-Knowledge Arguments: PIR + ECRH
	6.4 ZK-SNARKs

	7 State-of-the-art SNARKs: From code to proofs
	7.1 Code: Arithmetic Circuits
	7.2 Rank-1 Constraint System: R1CS
	7.3 Quadratic Arithmetic Programs: QAP
	7.4 Linear Interactive Proof/Polynomial Interactive Oracle Proof
	7.5 Kate Commitments

	8 Open Questions & Future Work
	8.1 Fiat-Shamir-Compatible Hash Functions
	8.2 Recursive ZK Proofs
	8.3 Post-Quantum Zero-Knowledge
	8.4 Optimisations

	Acknowledgments
	A Kate Commitments as vector commitments
	References

